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A simple approach to deriving motional dynamics information tions of the CbH2 group in phenylalanine are not influenced
of protein and peptide side chains by using 13C NMR relaxation by rotations of the phenyl ring. This is not strictly correct
data is presented. By using linear approximation of internal rota- since x1( t) and x2( t) rotations can be correlated; however,
tional correlation functions, simple equations for relating side- due to recoil effects (1) , this influence will be small. Like-
chain conformation, bond rotational amplitudes, and rotational wise, side-chain rotations other than x1 will have only a
correlation coefficients with different NMR relaxation parameters small influence at best on backbone motions. Moreover, it
have been obtained. Auto- and cross-correlation spectral densities

should be emphasized that these assumptions concern only
are considered, and it is shown that proton-coupled 13C NMR

side-chain bond rotational motions. The average conforma-relaxation measurements allow detailed motional information to
tion of a side chain, on the other hand, can have a strikingbe obtained. q 1998 Academic Press
effect on backbone motions since moments of inertia, solvent
accessibility, and intramolecular interactions depend upon
the geometry of groups involved.

The goal of the present study is to develop a simple ap- Since the following analysis considers only restricted internal
proach to deriving motional dynamics information on protein rotations as opposed to completely free rotations, an average
side chains from 13C NMR relaxation data. There are many local conformation determined by average dihedral angles f0

motional models and model-free approaches (1) available Å »f(t)…, c0 Å »c(t)…, and x0
i Å »xi (t)… can be used. The

for such analyses; however, most are either too complicated, symbols Df, Dc, and Dxi indicate angular deviations from
containing numerous parameters which all too often cannot their equilibrium positions such that Df Å f(t) 0 f0 and the
be determined from NMR experiments with any reasonable average values ofDf,Dc, and Dxi are equal to zero. Equations
accuracy, while others contain only a few simple parameters are also expressed solely for isotropic tumbling of a ‘‘rigid’’
but provide no physically meaningful picture of internal mo- backbone triangle formed by the atoms N–Ca–C and tumbling
tions. The approach presented herein retains the simplicity with overall correlation time t0. The N–Ca–C triangle for a
of a model-free approach while allowing a detailed under- given residue, however, is allowed to fluctuate within the molec-
standing of side-chain internal rotations in terms of confor- ular frame due to f, c bond rotations. t0 describes changes
mational parameters, particularly dihedral angles. Equations from the N–Ca–C equilibrium orientation (averaged over f(t)
for calculating any auto- or cross-correlation spectral density and c(t) rotations), e.g., Df Å Dc Å 0. The assumption of
Jab(v) [a and b are motional vectors, usually CH bonds for isotropy is not crucial to this analysis, and a more general case
13C NMR relaxation] are derived for use in obtaining internal for anisotropic tumbling may be developed using the appropriate

equations (1, 2).rotational correlation times, rotational restrictions, correlated
In general, the spectral density Jab(v) can be written asbond rotations, and peptide bond and side-chain geometry.

For this analysis, two reasonable assumptions have ini-
Jab(v) Å * Cab( t)cos(vt)dt , [1]tially been made: (1) protein side-chain motions of a particu-

lar residue are determined primarily by that residue’s xi ( i
where the correlation function Cab( t) has the form (1)Å 1, 2, . . . , n) and f, c bond rotations, and (2) positions

further out on a longer side chain have effectively no influ- Cab( t) Å 4p
5

exp(0t /t0)
ence on the motions of CH bonds closer to the backbone.
This latter assumption would mean, for example, that rota-

1 ∑
m

»Y2m[uM
a ( t) , wM

a ( t)]Y *2m[uM
b (0) , wM

b (0)] … .

[2]1 To whom correspondence should be addressed.
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Ffc( t) Å »exp[ ip(Dc( t) 0 Dc(0))

/ i(qDf( t) 0 q *Df(0))] … . [5]

For small-amplitude (restricted) Df( t) and Dc( t) rotations,
Eq. [5] can be rewritten as

Ffc( t) Å 1 0 1
2(2p 2s 2

c / (q 2 / q * 2)s 2
f )

FIG. 1. The molecular frame used in calculations described in the text 0 p(q / q *)cfcsfsc / p 2
»Dc( t)Dc(0) …

is shown with protein backbone N–Ca–C atoms.
/ qq * »Df( t)Df(0) …

/ pq * »Df( t)Dc(0) … / pq »Dc( t)Df(0) … ,

Y20 is the second-ranked spherical harmonics, and uM
a ( t )

[6]and wM
a ( t ) are polar angles defining the motional vector

a in the molecular frame, i.e., N–Ca–C triangle for Df
Å Dc Å 0. As mentioned above, this molecular frame is where sf and sc are the angular variances in Df( t) and
allowed to vary its orientation due to overall tumbling and Dc( t) , s 2

c Å »Dc 2( t) … and s 2
f Å »Df 2( t) … , and the rota-

to conformational changes in the protein or peptide. Since tional correlation coefficient, cfc , is defined as
the magnitude of these effects can be different for different
residues, t0 should be calculated for each residue in any

cfc Å »Df( t)Dc( t) … / (sfsc) . [7]protein dynamics analysis.
For CaH bond motions, only f( t) and c( t) backbone

rotations need to be considered. When rotational amplitudes
Note that this definition is identical to that given for cfc byare small, the time dependence of the spherical harmonics
Daragan and Mayo (8) . Moreover, at infinite t , the limiting[2] can be removed by performing the rotational transforma-
value for any correlation function defined by Eq. [6] is equaltion Dc, 0ufc , Df (Fig. 1) . As a starting point for this
to zero (3) :transformation, the equilibrium conformation was chosen

such that Df ÅDc Å 0 and with the Z axis running through
backbone C and Ca atoms. The corresponding Wigner ma- lim

tr`

»Dc( t)Df(0) … Å »Dc( t) … »Df( t) … Å 0. [8]
trix, D , has the form

D(2)
pq (Dc, 0ufc , Df) Following the approach used by Lipari and Szabo (3) ,

let us assume that all correlation functions in Eq. [6] canÅ exp(0iqDc)d (2)
pq (0ufc)exp(0ipDf) , [3]

be described by an exponential decay with a single time
constant, the correlation time ta . Since NMR relaxation datawhere d (2) is the second-order reduced D matrix. This trans-
are normally insensitive to the internal motional correlationformation can also be performed by using the N–Ca bond
time, this approximation is sufficient for our analysis. In thisas the Z axis in the molecular frame. For small Dc and Df
case, Eq. [6] can be simplified toangles, the resulting expression will be similar. Following

transformation, the correlation function can be written as

Ffc( t) Å 1 0 p 2s 2
c[1 0 exp(0t /ta)]

Cab( t) Å 4p
5

exp(0t /t0) ∑
p ,q ,q =

d (2)
pq (0ufc) 0 s 2

f (q 2 / q * 2) /2 / qq *s 2
fexp(0t /ta)

0 p(q / q *)cfcsfsc[1 0 exp(0t /ta)] .1 d (2)
pq =(0ufc)Ffc( t)Y2q(uf

a , wf
a )

[9]1 Y *2q =(u
f
b , wf

b ) . [4]

uf
a and wf

a are polar angles for motional vector a (CaH bond
Using the addition theorem for spherical harmonics andin this case) in the molecular frame {Xf , Yf , Zf}, where

the properties of d (2) matrices,the N–Ca bond is the Zf axis and the Xf axis lies in the N–
Ca–C plane (see Fig. 1) . The summation is performed over
p , q , q * from 02 to 2, and the correlation function, Ffc( t) , ∑

p

d (2)
pq d (2)

pq = Å dqq = , [10]
can be written as
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Eq. [4] can be transformed to S 2
CH Å 1 0 8

3(s 2
f / s 2

c) / 8
3sfscccf [15a]

S 2
HCH Å 01

3 / 4
3(s 2

f / s 2
c) 0 32

9sfscccf [15b]
Cab( t) Å exp(0t /t0)[S 2

ab / A ab
f exp(0t /ta)s

2
f

S 2
CHH Å 1

2 0 4
3(s 2

f / s 2
c) . [15c]

/ A ab
c exp(0t /ta)s

2
c

/ B ab
fcexp(0t /ta)sfsccfc] [11a] These equations are analogous to those derived using a dif-

ferent approach (8) . Equation [15a] defines the autocorrela-S 2
ab Å P2(cos uab)

tion order parameter, e.g., for the CaH methine group, while
0 A ab

f s
2
f 0 A ab

c s 2
c 0 B ab

fcsfsccfc . [11b] S 2
HCH and S 2

CHH define cross-correlation order parameters for
CH2 methylene groups. S 2

CHH, obtainable from heteronuclear
NMR relaxation experiments (9) , has a unique property—uab is the angle between motional vectors a and b , and P2(x)
the absence of any influence from f( t) and c( t) rotationalÅ (3x 2 0 1)/2 is the second-order Legendre polynomial.
correlations. Despite having three Eqs. [15] and three mo-The squared order parameter S 2

ab (3–6) is defined as the
tional parameters, it is impossible to obtain sf , sc , and ccflimiting value of the internal rotational correlation function.
independently, and only two combinations s 2

f / s 2
c andThis has been calculated from Eqs. [6] and [8]. The coeffi-

sfscccf can be determined from 13C NMR relaxation data.cients A ab
f and A ab

c can be expressed as
However, assuming that sf Å sc , ccf and sf Å sc can be
estimated. As will be shown later, using 13C relaxation data

A ab
k Å 3 cos u k

acos u k
bsin u k

asin u k
bcos(w k

a 0 w k
b) on Cb carbons can provide additional information to help

resolve this problem./ 3 sin2u k
asin2u k

bcos(2w k
a 0 2w k

b) , [12]
Note that Eq. [11a] can also be expressed as

where k Å f, c; and u k
a and w k

a are polar angles for vector
Cab( t) Å exp(0t /t0){S 2

ab / [P2(cos uab)a in the molecular frame in which the Z axis is coincident
with the direction of the k th rotation. Since (w k

a 0 w k
b) is 0 S 2

abexp(0t /ta)]}. [16]
the only difference term in Eq. [12], the direction of the X
axis is irrelevant for calculating A ab

k coefficients which de-
When a Å b and P2(cos uab) Å 1, this equation is identical

scribe the influence of k th bond rotations on the motions of
to the ‘‘classical’’ Lipari–Szabo equation (3) for the auto-

bond vectors a and b . For the autocorrelation function, Eq.
correlation function. For uncorrelated f( t) and c( t) bond

[12] can be significantly simplified:
rotations, the equation for the correlation function for CaH
bond motions looks like

A aa
k Å A a

k Å 3 sin2u k
a . [13]

Ca( t) Å exp(0t /t0)
For rotations about a single axis, this equation has already

1 [1 0 16
3 (1 0 exp(0t /ta))s 2

a] , [17]been derived for the autocorrelation function by Brüsch-
weiler and Wright (7) , and similar equations have been

whereobtained by Daragan and Mayo (8) for multiple bond rota-
tions by using vector algebra.

Coefficients B ab
fc , which describe the influence of f( t) s 2

a Å (s 2
f / s 2

c) /2. [18]
and c( t) rotational correlations on the motions of bond vec-
tors a and b , can be written in the form These expressions can be used to estimate angular variances,

for example, in relatively unstructured parts of proteins
where rotational correlations are small. In this case, only

B ab
fc Å

4p
5

∑
p ,q

pqd (2)
pq (0ufc)[Y2q(uf

a , wf
a )Y *2p(uc

b , wc
b ) three experimental parameters are required to derive sa , ta ,

and t0 .
For protein side-chain CH bond motions, Eqs. [11] can/ Y *2q(uf

b , wf
b )Y2p(uc

a , wc
a )] . [14]

be generalized as

The coefficients A and B can be readily calculated, yielding
Cab( t)Å exp(0t /t0)[S 2

ab/∑
k

A ab
k exp(0t /tk)s 2

kequations for autocorrelation order parameters as well as
for cross-correlation order parameters like JCH,CH =(v) and
JCH,HH =(v) which can be derived from 13C proton-coupled / ∑

ixk

B ab
ik exp(0t /tik)siskcik] [19a]

relaxation experiments (1) on, for example, the glycine CaH2

group. The primary order parameters SCH Å SCH,CH, SHCH Å S 2
abÅ P2(cos uab)0∑

k

A ab
k s 2

k 0 ∑
ixk

B ab
ik siskcik , [19b]

SCH,CH = , and SCHH Å SCH,HH = can be expressed as
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TABLE 2where k Å f, c, x1 , x2 , . . . . Equation [12] can be used to
The Coefficients A and B for Cross-Correlation Functions ofcalculate coefficients A , and coefficients B can be written

CbH2 Groups for Different Values of x0
1 Dihedral Anglesin a general form:

x0
1 1807 0607 607

B ab
ik Å 4p

5 ∑
m1m2

m1m2d (2)
m1m2

(bik)[Y 2m2
(u i

a , w i
a)Y *2m1

(u k
b , w k

b)
AHCH
f (CbH2) 04/3 0 0

AHCH
c (CbH2) 0 04/3 0

/ Y *2m2
(u i

b , w i
b)Y 2m1

(u k
a , w k

a)] . [20] AHCH
1 (CbH2) 04/3 04/3 04/3

ACHH
f (CbH2) 4/3 2/3 2/3

bik is the Euler angle for rotation of the i th bond (defined ACHH
c (CbH2) 2/3 4/3 2/3

by a molecular frame where the Z axis is coincident with ACHH
1 (CbH2) 4/3 4/3 4/3

the direction of the i th rotation) to the k th bond (defined
AHCH
a (CbH2) 04/3 04/3 0

by a molecular frame where the Z axis is coincident with ACHH
a (CbH2) 2 2 4/3

the direction of the k th rotation). Directions of the X axes
BHCH
fc (CbH2) 04/9 04/9 8/9can be chosen arbitrarily; however, the choice of these axes

BCHH
fc (CbH2) 04/3 04/3 4/3

should be taken into account when calculating polar angles
BHCH
f1 (CbH2) 032/9 4/9 4/9ua , wa , ub , and wb . Therefore, in order to calculate f and c

BCHH
f1 (CbH2) 0 4/3 4/3rotational correlations, the angle bik is equal to bik Å 0ufc

when the molecular frames are as shown in Fig. 1 [12]. To BHCH
c1 (CbH2) 4/9 032/9 4/9

BCHH
c1 (CbH2) 4/3 0 4/3calculate, for example, the influence of f and c rotational

correlations on motions of the CgH bond, additional transfor-
Note. Coefficients AHCH

a and ACHH
a were calculated under the assumptionmations of the spherical harmonics are required. Equation

that sf Å sc Å sa and tf Å tc Å ta. The dihedral angle x0
1 is defined by

[19a] is different from the Lipari–Szabo equation (3) be- N–Ca–Cb–Cg atoms.
cause it contains multiexponential decay terms to describe
the correlation function for internal bond rotations.

Coefficients A and B depend on the conformation of the
x 0

i Å »xi ( t) … . For example, consider rotations of CbH andside chain, i.e., on equilibrium values of the dihedral angles
CbH2 groups in a side chain. For the CbH group, x 0

1 is defined
by atoms N–Ca–Cb–Hb , and the coefficients A and B for
f( t) , c( t) , and x1( t) bond rotations are given in Table 1.

TABLE 1 For the CbH2 group, x 0
1 must be defined by the atoms N–

The Coefficients A and B for Autocorrelation Functions Ca–Cb–Cg with averaging being done over the two CbH
of CbH and CbH2 Groups for Different Values of the x0

1 Dihedral
bonds (see Tables 1 and 2). If sfÅ scÅ sa , the coefficientsAngles
Aa can be calculated (Tables 1 and 2) with Aa Å Af / Ac

and with summing being performed over k Å a, x1 , x2 ,x0
1 1807 0607 607

rrr in Eq. [14].
ACH
f (CbH) 0 8/3 8/3 Consider the simple case of uncorrelated f( t) , c( t) , and

ACH
c (CbH) 8/3 0 8/3 x1( t) rotations. Using Eq. [11b] and Table 1, a different

ACH
1 (CbH) 8/3 8/3 8/3

order parameter for the CbH group, S 2
CbH, is obtained for

ACH
f (CbH2) 8/3 4/3 4/3 different values of x 0

1 :
ACH
c (CbH2) 4/3 8/3 4/3

ACH
1 (CbH2) 8/3 8/3 8/3

x 0
1 Å 1807, S 2

CbH Å 1 0 8
3(s 2

c / s 2
x1) [21a]

ACH
a (CbH) 8/3 8/3 16/3

ACH
a (CbH2) 4 4 8/3 x 0

1 Å 0607, S 2
CbH Å 1 0 8

3(s 2
f / s 2

x1) [21b]
BCH
fc (CbH) 0 0 08/3

x 0
1 Å 607, S 2

CbH Å 1 0 8
3(s 2

f / s 2
c / s 2

x1) . [21c]BCH
fc (CbH2) 04/3 04/3 0

BCH
f1 (CbH) 0 8/3 8/3

When the CbH group is symmetric with respect to the N–BCH
f1 (CbH2) 8/3 4/3 4/3

Ca–C plane (x 0
1Å 607) , S 2

CbH is at a minimum and is always
BCH
c1 (CbH) 8/3 0 8/3

less than the CaH order parameter, S 2
a , which for uncorre-BCH

c1 (CbH2) 4/3 8/3 4/3
lated f( t) and c( t) rotations is equal to 1 0 8

3(s 2
f / s 2

c) .
Note. Coefficients ACH

a were calculated under the assumption that sf Å If x 0
1 Å 0607 and sx1 õ sf or if x 0

1 Å 1807 and sx1 õ sc ,
sc Å sa and tf Å tc Å ta. A and B for CH2 groups were calculated by S 2

a õ S 2
CbH. In other words, for highly restricted x1( t) rota-

averaging over two CH bonds. The dihedral angle x0
1 is defined by N–Ca–

tions, CbH bond motions are more restricted than CaH bondCb–Cg atoms for the CbH2 group and by N–Ca–Cb–Hb atoms for the CbH
group. motions. This has been observed for residues in a short,
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partially folded b-sheet peptide 20mer (10) . In another ex-
ample with a partially folded b-hairpin peptide 12mer (11) ,
different values for order parameters were found for differ-
ent x 0

1 dihedral angles. In this case, order parameters for
CbH, CbCg1 , and CbCg2 bonds in a valine residue were deter-
mined from analysis of 13C NMR relaxation data on CbH
and CgH3 groups (11) . These examples show how 13C NMR
relaxation data from side-chain carbons can yield unique
information on backbone motions.

From proton-coupled 13C NMR multiplet relaxation of the
CbH2 group, three motional order parameters, SCH, SHCH, and
SCHH, can be obtained to describe restrictions of CH and HH
motional vectors. For simplicity, let us see what occurs when
angular variances for f(t) and c(t) rotations are equal. With
x0

1Å 1807,0607 (the label b is omitted to simplify equations),

S 2
CH Å 1 0 4s 2

a 0 8
3s

2
x1 / 4

3cfcs
2
a [22a]

S 2
HCH Å 01

3 / 4
3s

2
a / 4

3s
2
x1 / 4

9cfcs
2
a [22b]

S 2
CHH Å 1

2 0 2s 2
a 0 4

3s
2
x1 / 4

3cfcs
2
a [22c]

and with x 0
1 Å 607, FIG. 2. The temperature dependence of order parameters for CaH and

CbH bonds of F2 and L7 in the peptide GFSKAELAKARAAKRGGYS 2
CH Å 1 0 8

3s
2
2 0 8

3s
2
x1

[23a]
which forms relatively stable populations of a-helix structure at low temper-
ature.S 2

HCH Å 01
3 / 4

3s
2
x1 0 8

9cfcs
2
a [23b]

S 2
CHH Å 1

2 0 4
3s

2
a 0 4

3s
2
x1 0 4

3cfcs
2
a . [23c]

These equations allow angular variances, rotational correla-
TABLE 3

tion coefficients, and the average value of the x1 dihedral
Coefficients »A… and »B… for Autocorrelation Functions of CgH

angle (defined by N–Ca–Cb–Cg atoms) to be calculated.and Cd,eH Groups (Phenyl Ring) for Different Values of the x0
1

For phenylalanine, for example, relaxation measurements onDihedral Angles
the 13CzH group (para-position) yield the order parameter

x0
1 1807 0607 607 S 2

CC for the Cb–Cg bond. Using the same definition for x1 ,
equations for these order parameters can be written for x 0

1
ACH
f (CgH) 8/3 16/9 16/9 Å 607,

ACH
c (CgH) 16/9 8/3 16/9

ACH
1 (CgH) 16/9 16/9 16/9

S 2
CC Å 1 0 16

3s
2
a 0 8

3s
2
x1 / 8

3cfcs
2
a [24a]ACH

2 (CgH) 8/3 8/3 8/3

ACH
f (Cd,eH) 2.25 1.917 1.917

and for x 0
1 Å 1807, 0607,ACH

c (Cd,eH) 1.917 2.25 1.917
ACH

1 (Cd,eH) 1.917 1.917 1.917
ACH

2 (Cd,eH) 2.25 2.25 2.25 S 2
CC Å 1 0 8

3s
2
a 0 8

3s
2
x1 . [24b]

BCH
fc (CgH) 016/9 016/9 08/9

BCH
f1 (CgH) 16/9 8/9 8/9 To analyze motions of CgH and CgH2 groups, different

BCH
c1 (CgH) 8/9 16/9 8/9

values of x 0
1 and x 0

2 need to be considered. Usually CgHBCH
f2 (CgH) 16/3 016/9 016/9

groups are more mobile than CbH groups, and there is con-BCH
c2 (CgH) 016/9 16/3 016/9

siderably greater angular variance in x2 than there is in x1 .BCH
12 (CgH) 16/9 16/9 16/9

Therefore, averaging over x2 can be done when analyzing
BCH
fc (Cd,eH) 01.5 01.5 01.167

NMR relaxation data. Table 3 gives A and B coefficients forBCH
f1 (Cd,eH) 1.5 1.167 1.167

autocorrelation functions of CgH bonds and phenyl ring CHBCH
c1 (Cd,eH) 1.167 1.5 1.167

BCH
f2 (Cd,eH) 4.5 01.5 01.5 bonds. For the phenyl ring, averaging was done over CdH

BCH
c2 (Cd,eH) 01.5 4.5 01.5 and CeH groups. In all cases, the dihedral angle x 0

1 was
BCH

12 (Cd,eH) 1.5 1.5 1.5 defined by the atoms N–Ca–Cb–Cg .
The number of unknowns can be significantly reducedNote. coefficients A and B for Cd,eH groups were calculated by averaging

by neglecting rotational correlations between nonadjacentover CdH and CeH bonds of the phenyl ring. The dehedral angle x0
1 is

defined by N–Ca–Cb–Cg atoms. bonds, e.g., f and x2 , and by initially assuming that all
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view of the fact that the peptide is more folded at lower
temperature. The only way to explain this apparent contra-
diction is to consider that f( t) and c( t) bond rotations are
strongly negatively correlated. This is consistent with the
proposal that in a-helices, f( t) and c( t) bond rotations are
negatively correlated (1) . For F2, more mobile and less
correlated rotations may be the result of its proximity to
the N-terminus. Examples of using cross-correlation spectral
densities to derive information on bond rotational correla-
tions and amplitudes of internal bond rotations can be found
in other papers (1, 8, 10, 11) . Rotational correlation coeffi-
cients can also be estimated by using molecular dynamics
simulations or by using appropriate analytical methods (8) .
Measuring dipolar–CSA (chemical shift anisotropy) cross-
correlation terms and 13C proton-coupled relaxation for CgH2

groups can provide further information to determine addi-
tional motional model parameters.

In conclusion, this simple approach can be used to derive
information on protein and peptide side-chain motional dy-
namics via analysis of 13C NMR relaxation data. Even
though more detailed descriptions of internal mobilities in
proteins are required to fully analyze all available experi-
mental data, this approach represents a first approximation
for estimating bond rotational amplitudes and correlation
coefficients in proteins.

ACKNOWLEDGMENTS

This work was supported by research grants from the National ScienceFIG. 3. The temperature dependence of angular variances for F2 and
Foundation (MCB-9729539), the National Institutes of Health (AA-10806),L7 in the peptide GFSKAELAKARAAKRGGY. Angular variances have
and the North Atlantic Treaty Organization (CRG-970039).been calculated under the assumption that internal rotations are uncorrelated.

REFERENCES

rotational correlations are equal to zero. For unrealistic angu- 1. V. A. Daragan and K. H. Mayo, J. Prog. Nucl. Magn. Spectrosc.
lar variances (e.g., those that decrease with increasing tem- 31, 63 (1997).
perature) which result following the first round of calcula- 2. L. G. Werbelow and D. M. Grant, Adv. Magn. Reson. 9, 189 (1977).
tions, fits can be improved by introducing rotational correla- 3. G. Lipari and A. Szabo, J. Am. Chem. Soc. 104, 4546 (1982).
tions as was done by Ramizez-Alvarado et al. (11) . Another 4. L. E. Kay and D. A. Torchia, J. Magn. Reson. 95, 536 (1991).
example is provided with the 18-residue peptide GFSKAE- 5. V. A. Daragan and K. H. Mayo, J. Magn. Reson. B 107, 274 (1995).
LAKARAAKRGGY which, at low temperature, forms an 6. L. Zu, M. D. Kemple, S. B. Landy, and P. Buckley, J. Magn. Reson.

B 109, 19 (1995).a-helix structure that is stabilized by a hydrophobic staple
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