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A simple approach to deriving motional dynamics information
of protein and peptide side chains by using **C NMR relaxation
data is presented. By using linear approximation of internal rota-
tional correlation functions, simple equations for relating side-
chain conformation, bond rotational amplitudes, and rotational
correlation coefficients with different NMR relaxation parameters
have been obtained. Auto- and cross-correlation spectral densities
are considered, and it is shown that proton-coupled *C NMR
relaxation measurements allow detailed motional information to

be obtained. © 1998 Academic Press

The goal of the present study is to develop a simple ap-
proach to deriving motional dynamicsinformation on protein
side chains from **C NMR relaxation data. There are many
motional models and model-free approaches (1) available
for such analyses, however, most are either too complicated,
containing numerous parameters which all too often cannot
be determined from NMR experiments with any reasonable
accuracy, while others contain only a few simple parameters
but provide no physically meaningful picture of internal mo-
tions. The approach presented herein retains the simplicity
of a model-free approach while allowing a detailed under-
standing of side-chain internal rotations in terms of confor-
mational parameters, particularly dihedral angles. Equations
for calculating any auto- or cross-correlation spectral density
Jw(w) [@aand b are motional vectors, usually CH bonds for
3C NMR relaxation] are derived for use in obtaining internal
rotational correlation times, rotational restrictions, correlated
bond rotations, and peptide bond and side-chain geometry.

For this analysis, two reasonable assumptions have ini-
tially been made: (1) protein side-chain motions of a particu-
lar residue are determined primarily by that residue’s x; (i
=1,2,...,n)and ¢, ¢y bond rotations, and (2) positions
further out on a longer side chain have effectively no influ-
ence on the motions of CH bonds closer to the backbone.
This latter assumption would mean, for example, that rota-
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tions of the C;H, group in phenylalanine are not influenced
by rotations of the phenyl ring. This is not strictly correct
since x1(t) and x(t) rotations can be correlated; however,
due to recoil effects (1), thisinfluence will be small. Like-
wise, side-chain rotations other than x; will have only a
small influence at best on backbone motions. Moreover, it
should be emphasized that these assumptions concern only
side-chain bond rotational motions. The average conforma-
tion of a side chain, on the other hand, can have a striking
effect on backbone motions since moments of inertia, solvent
accessibility, and intramolecular interactions depend upon
the geometry of groups involved.

Sincethefollowing anadyss considers only restricted interna
rotations as opposed to completely free rotations, an average
local conformation determined by average dihedral angles ¢°
= (@(1)), ¥° = (P(1)), and xP = (xi (t)) can be used. The
symbols A¢p, Ay, and Ay; indicate angular deviations from
their equilibrium positions such that A¢ = ¢(t) — ¢° and the
averagevaluesof A¢, Ay, and Ay; areequal to zero. Equations
are a0 expressed soley for isotropic tumbling of a *‘rigid”
backbone triangle formed by the atoms N—C,—C and tumbling
with overal corrdation time 7. The N—C,—C triangle for a
given residue, however, isallowed to fluctuate within the molec-
ular frame due to ¢, ¢ bond rotations. 7, describes changes
from the N—C,—C equilibrium orientation (averaged over ¢(t)
and (t) rotations), eg., A¢ = Ay = 0. The assumption of
isotropy is not crucia to this analysis, and a more general case
for anisotropic tumbling may be devel oped using the appropriate

equations (1, 2).
In general, the spectral density J,(w) can be written as
Jap(w) = f Cap(t)cos(wt)dt, [1]

where the correlation function C,,(t) has the form (1)

4
Ca(t) = g exp(—t/7o)

X 3 (Yan 03 (1), 02 (D]Y 2l 05'(0), 05" (0)]).
[2]
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FIG. 1. The molecular frame used in calculations described in the text
is shown with protein backbone N-C,—C atoms.

Y, is the second-ranked spherical harmonics, and 4 (t)
and ¢ ¥ (t) are polar angles defining the motional vector
a in the molecular frame, i.e., N-C,—C triangle for A¢
= Ay = 0. As mentioned above, this molecular frame is
allowed to vary its orientation due to overall tumbling and
to conformational changesin the protein or peptide. Since
the magnitude of these effects can be different for different
residues, T, should be calculated for each residue in any
protein dynamics analysis.

For C,H bond mations, only ¢(t) and (t) backbone
rotations need to be considered. When rotational amplitudes
are small, the time dependence of the spherical harmonics
[2] can be removed by performing the rotational transforma-
tion Ay, —6,,, A¢ (Fig. 1). As a starting point for this
transformation, the equilibrium conformation was chosen
such that A¢ = Ay = 0 and with the Z axis running through
backbone C and C, atoms. The corresponding Wigner ma-
trix, D, has the form

DR (AW, =044, Ad)

= exp(—igAy)did (— 0s,)exp(—ipAd), [3]
where d® is the second-order reduced D matrix. This trans-
formation can also be performed by using the N—C, bond
as the Z axis in the molecular frame. For small Ay and A¢
angles, the resulting expression will be similar. Following
transformation, the correlation function can be written as

4
Can(t) = % &XP(~t/70) T dE(~6)

p.q.q’
X dg)%])' ( - 94)!//) ¢)d>|/f(t)Y2q(0Z1 SDZ)

X Y3q (05, ¢5). [4]
8¢ and ¢ ¢ are polar angles for motional vector a (C,H bond
in this case) in the molecular frame { X,, Y,, Zs}, where
the N—-C, bond is the Z, axis and the X, axis liesin the N—
C,—C plane (see Fig. 1). The summation is performed over
p, q, q’' from —2 to 2, and the correlation function, ®,,(t),
can be written as
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Pyy(t) = (explip(Ay(t) — Ay(0))

+i(gAe(t) — a'Aé(0))]).  [9]

For small-amplitude (restricted) A¢(t) and Ays(t) rotations,
Eg. [5] can be rewritten as

Dyy(t) = 1 — 3(2p% ) + (* + q'?)0})
= p(g + a')Cpoyoy + PX(AY(L) AY(0))
+ 09’ (A¢(t) A¢(0))
+ pq’'(A¢(t) Ay(0)) + pa(Ay(t) Ap(0)),

[6]

where ¢, and o, are the angular variances in A¢(t) and
A(t), o5 = (Ag?(t)) and 05 = (Ad?(t)), and the rota-
tional correlation coefficient, c,,, is defined as

Con = (AD(t) AY(t))/ (0404). [7]

Note that this definition is identical to that given for c,, by
Daragan and Mayo (8). Moreover, at infinite t, the limiting
value for any correlation function defined by Eq. [6] isequal
to zero (3):

lim CAG(1) Ad(0)) = (Ap())(A¢(1)) = 0. [8]

Following the approach used by Lipari and Szabo (3),
let us assume that all correlation functions in Eqg. [6] can
be described by an exponential decay with a single time
constant, the correlation time 7. Since NMR relaxation data
are normally insensitive to the internal motional correlation
time, this approximation is sufficient for our analysis. In this
case, Eq. [6] can be simplified to

By(t) = 1 — pPoi[1l — exp(—t/7,)]
—05(9° + a'%)/2 + qq’ oL exp(—t/7.)
— p(a + q")Chyopoy[l — exp(—t/T.)].
[9]

Using the addition theorem for spherical harmonics and
the properties of d® matrices,

2)q(2) _
Z déq)dfnq)’ - 6qq’v
p

[10]
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Eq. [4] can be transformed to

Can(t) = exp(—t/10)[ Sk + APexp(—t/T,)03
+ APexp(—t/T,) 0}
+ B, exp(—t/7,) 040,Coy] [11a]
SZ, = P,(cos 6.)
— A?)bai — Af}ﬁba,z,, — BZI?/,U¢Gl/,C¢¢. [11b]

4 isthe angle between motional vectorsa and b, and P,(x)
= (3x? — 1)/2 is the second-order Legendre polynomial.
The sguared order parameter SZ, (3—6) is defined as the
limiting value of the internal rotational correlation function.
This has been calculated from Egs. [6] and [ 8] . The coeffi-
cients A and A3 can be expressed as

A2 = 3 cos fcos Afsin B5sin Afcos(pX — oF)

+ 3 sin?9ksin?dkcos(2pk — 2pk), [12]
where k = ¢, ; and 6% and ¥ are polar angles for vector
a in the molecular frame in which the Z axis is coincident
with the direction of the kth rotation. Since (& — ¢f) is
the only difference term in Eq. [12], the direction of the X
axis is irrelevant for calculating A2 coefficients which de-
scribe the influence of kth bond rotations on the motions of
bond vectors a and b. For the autocorrelation function, Eq.
[12] can be significantly simplified:
@ = A2 = 3s€n%k. [13]

For rotations about a single axis, this equation has already
been derived for the autocorrelation function by Brisch-
weiler and Wright (7), and similar eguations have been
obtained by Daragan and Mayo (8) for multiple bond rota-
tions by using vector algebra.

Coefficients B3, which describe the influence of ¢(t)
and ¢(t) rotational correlations on the motions of bond vec-
tors a and b, can be written in the form

471' * b b
B = 5 3 PAUR(~0u) Y (2, )Y 508,

p.g

+ Y 5(08, 08)Ya(0%, 9£)]. [14]
The coefficients A and B can be readily calculated, yielding
equations for autocorrelation order parameters as well as
for cross-correlation order parameters like Jey - (w) and
Jennn (w) which can be derived from **C proton-coupled
relaxation experiments (1) on, for example, theglycine C,H,
group. The primary order parameters Scy = Schchy Sich =
Scrcn, @ Sopn = Scrmne Can be expressed as
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St =1-35(0h + 0l) + 50404Cus [154]
SﬁCH = —% + %(a’i + Ui) - %20'(/)01//C1//</) [15b]
S&n =3 — %(Ui +05). [15c]

These equations are analogous to those derived using a dif-
ferent approach (8). Equation [15a] defines the autocorrela-
tion order parameter, e.g., for the C,H methine group, while
Sicn and Sy, define cross-correlation order parameters for
CH, methylene groups. S, obtainable from heteronuclear
NMR relaxation experiments (9), has a unique property—
the absence of any influence from ¢(t) and (t) rotational
correlations. Despite having three Egs. [15] and three mo-
tional parameters, it isimpossible to obtain o, o, and c,,
independently, and only two combinations o3 + o and
0404Cye Can be determined from *C NMR relaxation data.
However, assuming that ¢, = o,, C,4 and o, = o, can be
estimated. As will be shown later, using *C relaxation data
on C,; carbons can provide additional information to help
resolve this problem.
Note that Eq. [11a] can aso be expressed as

Ca(t) = exp(—t/70){S% + [P2(cos .,)

— Spexp(-t/T,)]}. [16]
When a = b and P,(cos 64,) = 1, this equation is identical
to the ‘‘classical’’ Lipari—Szabo equation (3) for the auto-
correlation function. For uncorrelated ¢(t) and (t) bond
rotations, the equation for the correlation function for C,H
bond motions looks like

C.(1) = exp(—t/7o)

X [1-3(1- exp(-t/t))oil, [17]

where

b= (cf + 0l)l2 [18]
These expressions can be used to estimate angular variances,
for example, in relatively unstructured parts of proteins
where rotational correlations are small. In this case, only
three experimental parameters are required to derive o, 7.,
and 7.

For protein side-chain CH bond motions, Egs. [11] can
be generdized as

Ca(t) = exp(—t/70)[ Sk + zAﬁbeXP(_t/Tk)Uﬁ
K

+ 3 Bie exp(—t/7i) oioCic]
ik
SZ = PZ(COSHED) - ZAﬁbaﬁ - Z Bial?O'iO'kCik, [19b]
k

ik

[19a]
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where k = ¢, ¥, x1, X2, - . . . EQuation [12] can be used to
calculate coefficients A, and coefficients B can be written
in a genera form:

Bﬁ? = 4—§ z mlrrbd%zl)nb(ﬁik)[YZmz(eia- <Pia)Y§m1(9k, SDE)

mmy

+ Yim, (0, ©b)Yam, (05, 051 [20]
Bi is the Euler angle for rotation of the ith bond (defined
by a molecular frame where the Z axis is coincident with
the direction of the ith rotation) to the kth bond (defined
by a molecular frame where the Z axis is coincident with
the direction of the kth rotation). Directions of the X axes
can be chosen arbitrarily; however, the choice of these axes
should be taken into account when calculating polar angles
0., ¢a, By, and p,. Therefore, in order to calculate ¢ and
rotational correlations, the angle G is equal to Bix = — 0y,
when the molecular frames are as shown in Fig. 1 [12]. To
calculate, for example, the influence of ¢ and  rotational
correlations on motions of the C,H bond, additional transfor-
mations of the spherical harmonics are required. Equation
[19a] is different from the Lipari—Szabo equation (3) be-
cause it contains multiexponential decay terms to describe
the correlation function for internal bond rotations.
Coefficients A and B depend on the conformation of the
side chain, i.e., on equilibrium values of the dihedral angles

TABLE 1
The Coefficients A and B for Autocorrelation Functions
of C4H and C4H, Groups for Different Values of the x} Dihedral
Angles

X2 180° —60° 60°
ASH (CsH) 0 8/3 8/3
ASH (C4H) 8/3 0 8/3
ASH (C4H) 8/3 8/3 8/3
AZ" (CoHo) 8/3 4/3 4/3
ASH (C4H,) 4/3 8/3 43
ASH (C4Hy) 8/3 8/3 8/3
ASH (C4H) 8/3 8/3 16/3
ASH (C4Hy) 4 4 8/3
BS (CoH) 0 0 -8/3
BS" (CgH2) —4/3 —4/3 0
B%:' (C4H) 0 8/3 8/3
BS:' (CsHy) 8/3 4/3 43
BSY (C4H) 8/3 0 8/3
BJY (CsH,) 4/3 8/3 413

Note. Coefficients AS" were calculated under the assumption that o, =
oy =o,and 1, =1, = 7, Aand B for CH, groups were calculated by
averaging over two CH bonds. The dihedral angle x? is defined by N—C,,—
Cs—C, atoms for the C4sH, group and by N-C,—C;—H atoms for the C;H
group.
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TABLE 2
The Coefficients A and B for Cross-Correlation Functions of
C;H, Groups for Different Values of x} Dihedral Angles

x? 180° —60° 60°
AQCH (CsHo) —4/3 0 0
A (CsHy) 0 —4/3 0
ALCH (C4H,) —4/3 —4/3 —4/3
ASHH (C4H,) 43 23 213
AGHM (C4Hy) 2/3 4/3 2/3
A (C4H,) 43 4/3 43
A (C4Hy) —4/3 —4/3 0
ASHH (ChHY) 2 2 4/3
Bl (C4H,) —4/9 —4/9 8/9
BSH (CsH.) —4/3 —4/3 4/3
BYSH (CsHo) -32/9 4/9 4/9
BS™ (C4H) 0 4/3 4/3
BYS™ (CsHy) 4/9 -32/9 4/9
B,%’H (CsH2) 4/3 0 4/3

Note. Coefficients A7°" and AS™™ were calculated under the assumption
that o4 = 0, = 0, and 7, = 7, = 7,. The dihedral angle x? is defined by
N-C,-C;—C, atoms.

x? = {xi(t)). For example, consider rotations of C;,H and
C;H, groupsin aside chain. For the C;H group, x ¢ is defined
by atoms N-C,—C;—H;, and the coefficients A and B for
o(t), (1), and x.(t) bond rotations are given in Table 1.
For the C4H, group, x 9 must be defined by the atoms N—
C,—C;—C, with averaging being done over the two CzH
bonds (see Tables1and 2). If o4, = 0, = 0, the coefficients
A, can be calculated (Tables 1 and 2) with A, = A, + A,
and with summing being performed over k = «, x1, X2,

- in Eq. [14].

Consider the smple case of uncorrelated ¢(t), ¥ (t), and
x1(t) rotations. Using Eqg. [11b] and Table 1, a different
order parameter for the C;H group, %ﬂH, is obtained for

different values of x2:

X? = 1800, S(Z:ﬁH =1- g(ai + O'f(l) [Zla]
xi=—60°, SEn=1- 803 + 0y) [21b]
xy= 60°, S%ﬂH =1-38(03 + 03 +02%). [21c]

When the C;H group is symmetric with respect to the N—
C.—Cplane(x = 60°), S&; isat aminimum and is always
less than the C,H order parameter, SZ, which for uncorre-
lated ¢(t) and y(t) rotations is equal to 1 — (03 + o3).
If x§=—-60°and o,, < o, orif x? = 180° and 0,, < 0,
S; < S&,u. In other words, for highly restricted x,(t) rota-
tions, C;H bond motions are more restricted than C,H bond
motions. This has been observed for residues in a short,
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partially folded 5-sheet peptide 20mer (10). In another ex-
ample with a partially folded 8-hairpin peptide 12mer (11),
different values for order parameters were found for differ-
ent x 9 dihedral angles. In this case, order parameters for
CsH, C;C,1, and C4C,, bondsin avaline residue were deter-
mined from analysis of *C NMR relaxation data on C,;H
and C,H; groups (11). These examples show how *C NMR
relaxation data from side-chain carbons can yield unique
information on backbone motions.

From proton-coupled *C NMR multiplet relaxation of the
CsH, group, three motiona order parameters, S, Sicn, and
Shu, Can be obtained to describe restrictions of CH and HH
motiona vectors. For smplicity, let us see what occurs when
angular variances for ¢(t) and (t) rotations are equal. With
x5 = 180°, —60° (thelabd 3 is omitted to simplify equations),

2n=1— 402 — %02, + 3ch0l [22a]
Gon = —5 + 505 + 5021 + 5Cpy05 [22b]
S = 53 — 205 — %‘Uil + %CWU(% [22c]
and with x 9 = 60°,
e =1-3%3% - %%, [234]
Shon = =5 + 5051 — 5Cwoa [23b]
Sehn = % - %Ui - %U)ch - %Cwai' [23c]
TABLE 3

Coefficients (A) and (B) for Autocorrelation Functions of C,H
and C,.H Groups (Phenyl Ring) for Different Values of the x?
Dihedral Angles

P%t 180° —60° 60°
AS (C,H) 8/3 16/9 16/9
AS™ (C,H) 16/9 8/3 16/9
AS (C,H) 16/9 16/9 16/9
AS" (C,H) 8/3 8/3 8/3
AS" (C, H) 2.25 1.917 1.917
ASH (C, H) 1.917 2.25 1.917
AH (C, H) 1.917 1.917 1.917
AS™ (Cs.H) 2.25 2.25 2.25
BS} (C,H) —16/9 —16/9 —-8/9
B3 (C,H) 16/9 8/9 8/9
BSY (C,H) 8/9 16/9 8/9
BSY (C,H) 16/3 —16/9 —16/9
B%S (C,H) —16/9 16/3 —16/9
B (C,H) 16/9 16/9 16/9
B3 (Cs.H) -15 -15 —1.167
BSH (CsH) 15 1.167 1.167
Bt (Cs.H) 1.167 15 1.167
Bg: (CsH) 45 ~15 15
B3 (CsH) -15 45 -15
B (CsH) 15 15 15

Note. coefficients A and B for C; H groups were calculated by averaging
over C,H and C.H bonds of the phenyl ring. The dehedral angle X3 is
defined by N-C,—C,;—C, atoms.
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FIG. 2. The temperature dependence of order parameters for C,H and
CsH bonds of F2 and L7 in the peptide GFSK AELAKARAAKRGGY
which formsrelatively stable populations of a-helix structure at |ow temper-
ature.

These equations allow angular variances, rotational correla-
tion coefficients, and the average value of the x, dihedral
angle (defined by N-C,—C;—C, atoms) to be calculated.
For phenylalanine, for example, relaxation measurements on
the *CH group (para-position) yield the order parameter
SZc for the C,—C, bond. Using the same definition for x;,
equations for these order parameters can be written for x 2
= 60°,

2 6 2 8 2 8 2
Scc=1-—F05 — 3051 + 3Cs0a

[244]
and for x¢ = 180°, —60°,
S%C: 1_202_;%0-?(1- [24b]

To analyze motions of C,H and C,H, groups, different
values of x9 and x2 need to be considered. Usualy C H
groups are more mobile than C;H groups, and there is con-
siderably greater angular variance in -, than there isin y;,.
Therefore, averaging over x, can be done when analyzing
NMR relaxation data. Table 3 gives A and B coefficients for
autocorrelation functions of C H bonds and phenyl ring CH
bonds. For the phenyl ring, averaging was done over CsH
and CH groups. In all cases, the dihedral angle x§ was
defined by the atoms N-C,—-C;—C,.

The number of unknowns can be significantly reduced
by neglecting rotational correlations between nonadjacent
bonds, eg., ¢ and x», and by initially assuming that all
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FIG. 3. The temperature dependence of angular variances for F2 and

L7 in the peptide GFSK AELAKARAAKRGGY. Angular variances have
been calculated under the assumption that internal rotations are uncorrel ated.

rotational correlations are equal to zero. For unrealistic angu-
lar variances (e.g., those that decrease with increasing tem-
perature) which result following the first round of calcula-
tions, fits can be improved by introducing rotational correla
tions as was done by Ramizez-Alvarado et al. (11). Another
example is provided with the 18-residue peptide GFSK AE-
LAKARAAKRGGY which, at low temperature, forms an
a-helix structure that is stabilized by a hydrophaobic staple
motif (12). By measuring *3C spin—lattice relaxation times
and *C—{'H} NOEs at two frequencies, S, valuesfor CH
bonds of severa residues have been determined (13). These
are exemplified in Fig. 2 for phenylalanine (F2) and leucine
(L7). Theequilibrium value of x2 = —60° was derived from
bond rotation energy profiles calculated using the DIS-
COVER program (Version 2.3.5, Biosym Technologies).
Assuming that internal rotations are uncorrelated, angular
variances were calculated for different temperatures (Fig.
3).For L7, 0% = (05 + o5)/2increases on going to lower
temperature. This is physically unrealistic, particularly in

COMMUNICATIONS

view of the fact that the peptide is more folded at lower
temperature. The only way to explain this apparent contra-
diction is to consider that ¢(t) and #(t) bond rotations are
strongly negatively correlated. This is consistent with the
proposal that in a-helices, ¢(t) and ¢ (t) bond rotations are
negatively correlated (1). For F2, more mobile and less
correlated rotations may be the result of its proximity to
the N-terminus. Examples of using cross-correlation spectral
densities to derive information on bond rotational correla
tions and amplitudes of internal bond rotations can be found
in other papers (1, 8, 10, 11). Rotational correlation coeffi-
cients can aso be estimated by using molecular dynamics
simulations or by using appropriate analytical methods (8).
Measuring dipolar—CSA (chemical shift anisotropy) cross-
correlation terms and **C proton-coupled relaxation for C,H,
groups can provide further information to determine addi-
tional motional model parameters.

In conclusion, this simple approach can be used to derive
information on protein and peptide side-chain motional dy-
namics via analysis of *C NMR relaxation data. Even
though more detailed descriptions of internal mobilities in
proteins are required to fully analyze all available experi-
mental data, this approach represents a first approximation
for estimating bond rotational amplitudes and correlation
coefficients in proteins.
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